lunes, 15 de noviembre de 2010

practica en siladin

Calor y temperatura.
La temperatura es la medida de energía cinética promedio de un cuerpo. La temperatura sólo mide la temperatura de un solo cuerpo.


Se realizó un experimento prendiendo una vela, y despues poniendo la mano a un costado de esta , y muy de cerca. Luego se puso la mano arriba de la vela, sin embargo no se podía acercar tanto como cuando se ponía de un lado de la vela la mano. 


Esto se debe a que las moléculas se expanden y suben; así 'golpeando' nuestra mano y haciendonos sentir dicha sensación.


La temperatura se mde con la ayuda de un termómetro, el cual sólo mide su propia temperatura.


Radiación: De un cuerpo depende de la temperatura más la cantidad de energía que se va a radiar.
En un experimento se obtuvo ayuda del motor de heron, en el cual era un simple ejemplo del motor de vapor. Vapor = 100 °C
Que con la ayuda del vapor que sacaba se lograba mover.

Después de que nos explicaron todos los experimentos, se concluyo que la presión atmosférica es un factor muy importante, ya que también por esta se es más fácil respirar en la playa, que respirar en una montaña.

Actividad de leboratorio

Actividad:  "Conversión de trabajo en calor."

Material:
Cautín, madera, metal, piedra, taladro con broca, termómetro.

Procedimiento:
A.- Colocar la broca al taladro y aplicar durante dos minutos la acción de taladrar a la madera, el metal y la piedra.
B.-Medir la temperatura después de los dos minutos en cada caso.
C.-Dibujar sobre la madera un motivo para grabarlo con el cautín.

Equipo
Temperatura madera
Metal
Piedra
1
100C
190C
170C
2
160C
190C
180C
3
170 C
19 0C
160 C
4
150C
190C
170C
5
180C
190C
170C
6
18OC
190C
18.50C

Graficar los datos para cada material (equipo-temperatura).

Conclusiones:
El taladro produce un trabajo y al aplicarlo sobre estas tres superficies se trasformo en calor, el metal al ser el mejor conductor, es el de la temperatura más alta con 19°C y le siguen la madera y la piedra cuyas mediciones fueron my variables,
Gracias a esta actividad pudimos observa cómo se transforma el trabajo en calor en una superficie

Maquinas termicas y eficiencia de maquinas ideales

maquinas termicas:
Las máquinas térmicas son máquinas de fluido compresible:
  • En los motores térmicos, la energía del fluido que atraviesa la máquina disminuye, obteniéndose energía mecánica.
  • En el caso de generadores térmicos, el proceso es el inverso, de modo que el fluido incrementa su energía al atravesar la máquina.
Tal distinción es puramente formal: Los motores térmicos, son máquinas que emplean la energía resultante de un proceso, generalmente de combustión, para incrementar la energía de un fluido que posteriormente se aprovecha para la obtención de energía mecánica. Los ciclos termodinámicos empleados, exigen la utilización de una máquina o grupo generador que puede ser hidráulico (en los ciclos de turbina de vapor) o térmico (en los ciclos de turbina de gas), de modo que sin éste el grupo motor no puede funcionar, de ahí que en la práctica se denomine Motor Térmico al conjunto de elementos atravesados por el fluido, y no exclusivamente al elemento en el que se obtiene la energía mecánica.

Teniendo en cuenta lo anterior, podemos clasificar las máquinas térmicas tal como se recoge en el cuadro siguiente .

Motoras:  volumetricas---> alternativas (maquina de vapor)
                                         rotativas (motor rotativo de aire caliente)
               turbomáquinas--> turbinas
Generadoras:  volumétricas--> alternativas (compresor de embolo)
                                                rotativas (compresor rotativo)
                       turbomáquinas-> turbocompresores

bibliografia.
http://es.wikipedia.org/wiki/M%C3%A1quina_t%C3%A9rmica
  

miércoles, 10 de noviembre de 2010

practica de: Aplicaciones de las formas de calor: conducción, convección, radiación.

Evaporación en el metal de la parafina:  2:41 s
Evaporación  en el metal naranja: 2:52 s
Temperatura inicial del agua con acerrín: 17°C

1° minuto: 34°
2° minuto: 46°
3° minuto: 54°
4° minuto: 64°
5° minuto: 73°
6° minuto: 81° ---------> empezó a dar vueltas el acerrín
7° minuto: 89°
8°minuto: 94---->temperatura final


17 vueltas por minuto dio el radiometro.

jueves, 4 de noviembre de 2010

Tabla de la practica en Sala Telmex

Distancia cm
Tiempo segundos
Velocidad cm/seg
20
0.5
40
40
1.1
36.36
60
1.7
35.29
80
2.1
38.09
100
2.8
35.71
120
3.5
34.28



Lectura
Distancia cm
Tiempo segundos
Velocidad cm/seg
1
10
4
2.5
2
15
6
2.5
3
20
8
2.5
4
30
12
2.5
5
40
16
2.5
6
50
20
2.5

Primera Ley de la Termodinámica

El primer principio de la termodinámica o primera ley de la termodinámica,[1] se postula a partir del siguiente hecho experimental:
En un sistema cerrado adiabático (aislado) que evoluciona de un estado inicial \mathcal{A} a otro estado final \mathcal{B}, el trabajo realizado no depende ni del tipo de trabajo ni del proceso seguido.
Más formalmente, este principio se descompone en dos partes;
Este enunciado supone formalmente definido el concepto de trabajo termodinámico, y sabido que los sistemas termodinámicos sólo pueden interaccionar de tres formas diferentes (interacción másica, interacción mecánica e interacción térmica). En general, el trabajo es una magnitud física que no es una variable de estado del sistema, dado que depende del proceso seguido por dicho sistema. Este hecho experimental, por el contrario, muestra que para los sistemas cerrados adiabáticos, el trabajo no va a depender del proceso, sino tan solo de los estados inicial y final. En consecuencia, podrá ser identificado con la variación de una nueva variable de estado de dichos sistemas, definida como energía interna.
Se define entonces la energía interna, U,como una variable de estado cuya variación en un proceso adiabático es el trabajo intercambiado por el sistema con su entorno:
 \Delta U = + \ W
Cuando el sistema cerrado evoluciona del estado inicial A al estado final B pero por un proceso no adiabático, la variación de la Energía debe ser la misma, sin embargo, ahora, el trabajo intercambiado será diferente del trabajo adiabático anterior. La diferencia entre ambos trabajos debe haberse realizado por medio de interacción térmica. Se define entonces la cantidad de energía térmica intercambiada Q (calor) como:
Q = \Delta U - W\,
Esta definición suele identificarse con la ley de la conservación de la energía y, a su vez, identifica el calor como una transferencia de energía. Es por ello que la ley de la conservación de la energía se utilice, fundamentalmente por simplicidad, como uno de los enunciados de la primera ley de la termodinámica:
La variación de energía de un sistema termodinámico cerrado es igual a la diferencia entre la cantidad de calor y la cantidad de trabajo intercambiados por el sistema con sus alrededores.
En su forma matemática más sencilla se puede escribir para cualquier sistema cerrado:
 \Delta U = Q + W\,
donde:
\Delta U\, es la variación de energía del sistema,
 Q\, es el calor intercambiado por el sistema a través de unas paredes bien definidas, y
 W\, es el trabajo intercambiado por el sistema a sus alrededores
Bibliografia:
http://es.wikipedia.org/wiki/Primera_ley_de_la_termodin%C3%A1mica

Cambios de energía interna por calor y trabajo.

Energía InternaPara comprender los fenómenos térmicos es necesario imaginar los cuerpos materiales como almacenes de partículas dotadas de movimiento de diferentes tipos: vibración, rotación y traslación. Cada uno de estos movimientos pueden ser transferidos a otra partícula que no lo tenga, mediante algún tipo de interacción, como por ejemplo choques o acciones ejercidas a distancia. Se dice en estos casos que las partículas tienen energía, la cual puede ser aumentada o disminuida, aumentando cualquiera de estos tipos de movimientos o todos a la vez.

La Energía Total de un objeto material depende del número de partículas que tenga, de la energía cinética de cada una de ellas y de la energía proveniente de las interacciones entre ellas. Esta energía total es la Energía Interna que tiene el cuerpo.
Esto quiere decir que un objeto material tiene mucha energía interna por tres razones: o porque tiene muchas partículas o átomos componentes, o porque sus átomos o partículas componentes tienen una energía muy alta., o ambas cosas a la vez, como ocurre en el caso de una estrella.


Calor?
Cuando se transfiere energía de un cuerpo a otro porque las temperaturas de los cuerpos son diferentes se dice que se ha transferido energía calórica o calor. La energía calórica o calor fluye de los cuerpos más calientes hacia los más fríos. Para entender cómo ocurre esto, es necesario apoyarse en el concepto de Temperatura.

Actualmente se habla de calor en Física solamente en aquellos casos donde se transfiere energía por diferencia de temperatura, las otras situaciones donde se produce calentamiento hay que explicarlas sin uso del término calor, como es el caso del calentamiento del clavo por efecto del martilleo sobre él.

Variación de la energía interna efectuando trabajo mecánico.
Otra forma de calentar o enfriar un cuerpo es por medio del trabajo mecánico, ejemplos de esto ocurren cuando nos frotamos las manos para calentarlas, cuando nos lanzamos por un tobogán largo, cuando se martilla un clavo, cuando se pule la superficie de un carro y un sin número de otras experiencias donde los cuerpos se calientan por el mero roce entre sus partes, pero en ninguno de esos casos, el calentamiento de los cuerpos ocurre por el contacto con una fuente a más alta temperatura.

Se habla de trabajo mecánico porque se aplica una fuerza sobre los cuerpos y se produce un desplazamiento de ellos a consecuencia de esa fuerza. El Trabajo mecánico se mide a través del producto de la componente de la fuerza que actúa en un cuerpo en la dirección del desplazamiento, multiplicada por el desplazamiento, es decir:
Trabajo = Fuerza D* Desplazamiento
Donde Fuerza D, es la componente de la fuerza en la dirección del desplazamiento.
 

Para entender cómo ocurre la transferencia de energía, es necesario imaginar las superficies de los cuerpos en contacto y pensar que las partículas o átomos de una superficie están interactuando con los átomos de la otra, transfiriéndose así el movimiento producido por las fuerzas que actúan sobre ambos materiales.
En estos casos la energía interna de ambos cuerpos aumenta porque aumentó su temperatura, es decir aumentó la energía de sus partículas, a consecuencia del roce entre los cuerpos.

Bibliografia:
http://www.rena.edu.ve/TerceraEtapa/Fisica/Calor.html